

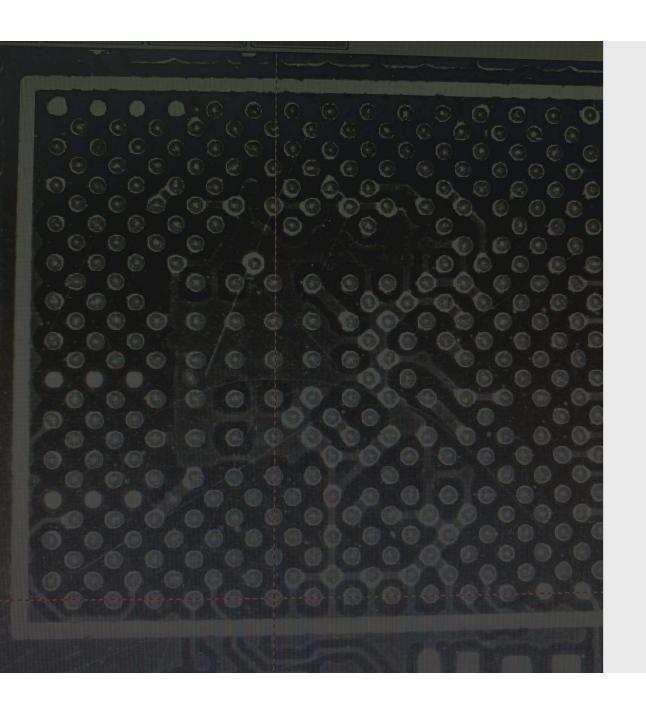
シ゛ェットフ゜リンター Jet Setter シリース゛

PRODUCT LINE OVERVIEW

SMT業界の小型化対応

1. 製品の変化

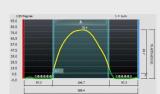
- 1) 基板のパッケージング化
- 2) 小型部品の増加と新製品の短期リリースによる製品の多変化

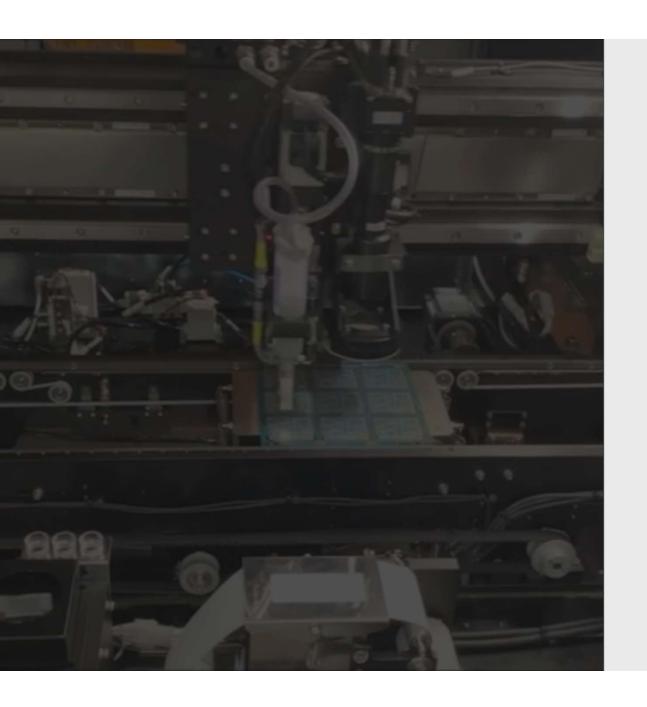

3.0 x 3.0mm 2.5 x.2.5mm 0.125 x 0.225mm

- 2. 部品の小型化による工程能力の低下
 - 1) 小型化によるPADの減少>工程対応力の問題
 - 2) PCB PAD小型化による公差の問題
 - 3) 原材料の公差及び工程公差による工程能力の低下

3. 生産性の低下


- 1) 頻繁なPCB公差の問題により生産ストップや稼働率の低下
- ロット別によるPCBマスク製作のコストの増加
- 公差を合わせるための再製作コストの増加
- 直行率の低下による生産性の低下
- 2) 直行率の低下による作業者の増加及び現場業務の増加
- 3) 対応力の低下:納期及び品質の問題




ジェットプリンター (Jet Setter)

- ステンシルマスクを使用せず高速噴射を利用して、はんだやエポキシを塗布する装置で、従来の印刷工程のいろいろな問題点を解決することができます。
- 電子産業で必要な部品やボードが小型化している中、様々なボードデザインが増えるにつれ、既存のステンシル工程では、迅速な対応が難しくなってきており、メンテナンスにも多くのリソースが必要となっている。これを解決できるジェット印刷技術の必要性が拡大している。
- 従来の装置よりも大幅に性能を超えて市場に参入中。

Jet Setter 特徵

・ 世界最高速のプリント噴射技術

- 独自開発のモーションコントロール技術で、最大時間144万ドット 噴射。(既存設備に比べ25%の速度向上)
- 大量パッド印刷が可能。

・ 最適なはんだ量による品質の向上

- ユーザー設定で各パッド別にはんだ量を制御。
- 様々なドットサイズの制御が可能

・ 高速生産の最適化

- ステンシルデザインを最適化するのにかかるリソースの削減。
- ステンシルを製造せずに迅速に生産対応が可能である。
- プロセスの最適化

環境にやさしい、コストの削減

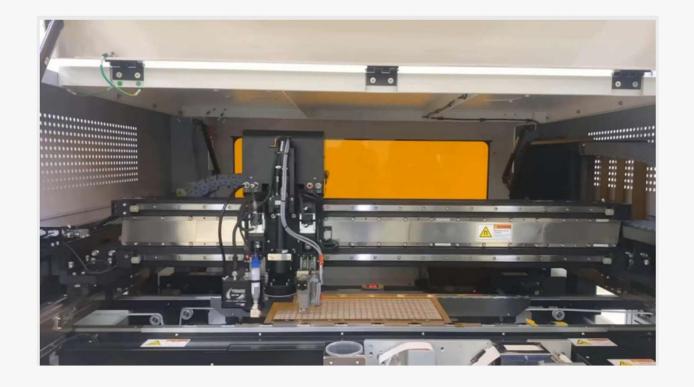
- はんだの消費を最小限に抑える事が可能。 既存のプリンタープロセスに比べ20~30%削減。
- ステンシルが不要な為、洗浄と管理にかかるコストの削減。
- 不良の減少により費用と時間の削減。

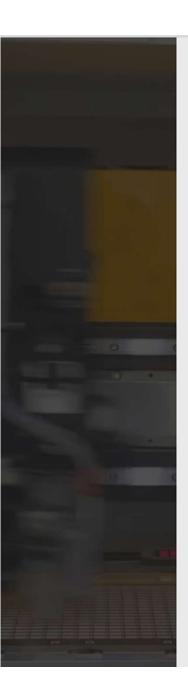
Jet Setter スペック

▶ 最小ドッドサイズ 180µm

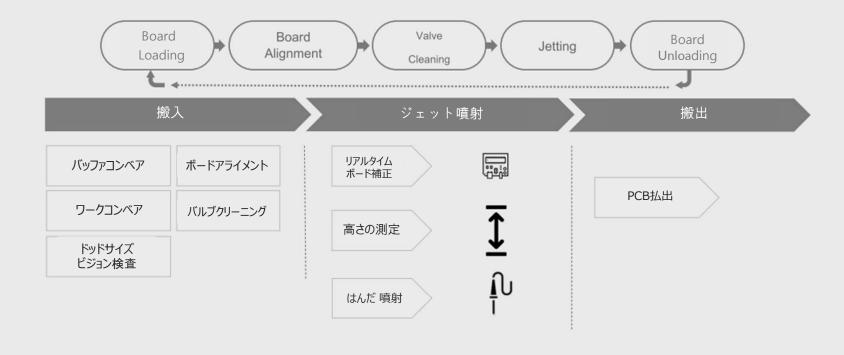
▶ 噴射速度 400Hz, 1,440,000 DPH

▶ 単一ドッド繰返し/精度 ±30µm/±50µm

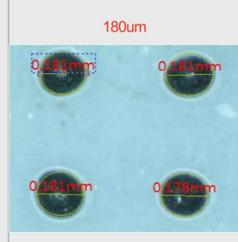

> ガントリー加速度 3G


▶ 再現性 ±3μm

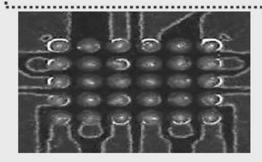
▶ 注入サイズ 5/10/30cc

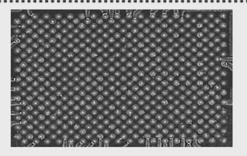

▶ 高さの測定 レーザーアナログセンサー

> クリーンルーム クラス 10,000


Jet Setter 工程

はんだ イメージ 対応製品

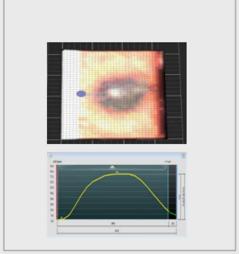





一般製品

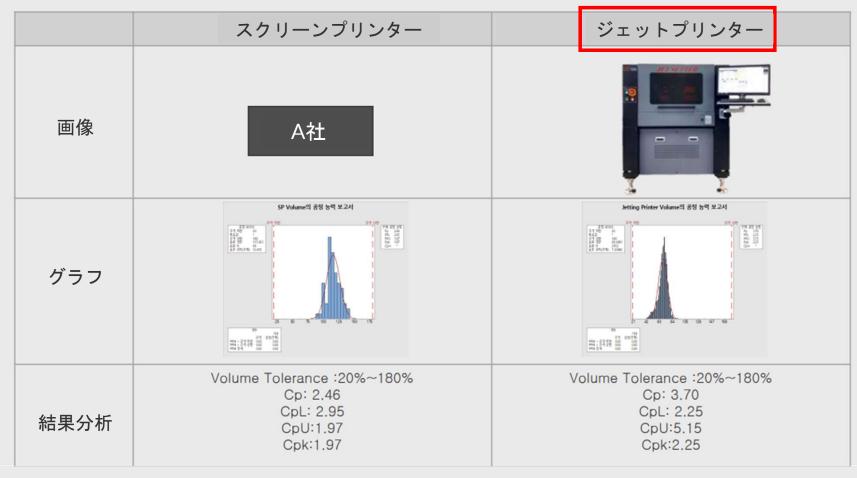
小型PAD(ミニ LED, BGA)

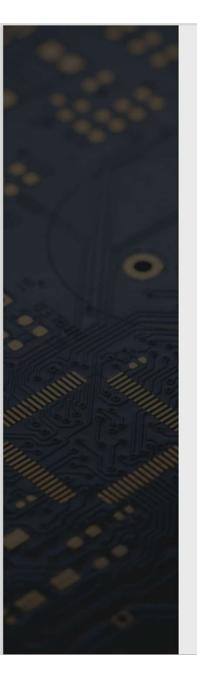
接着

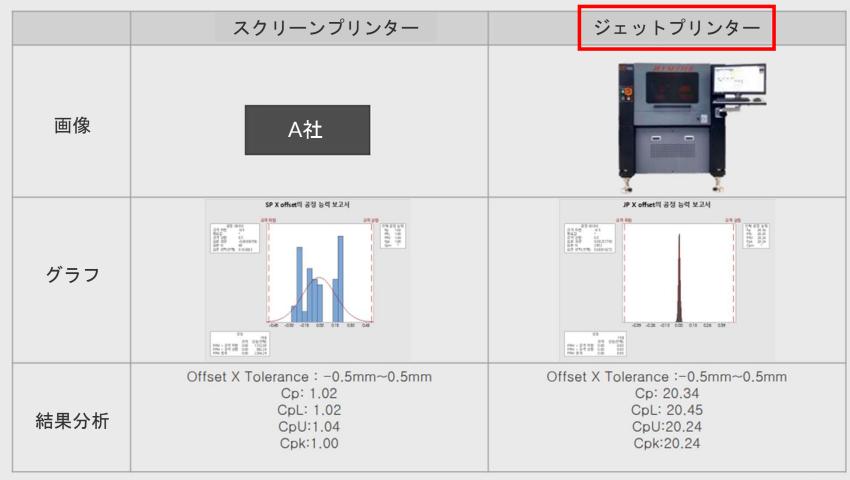


はんだイメージ

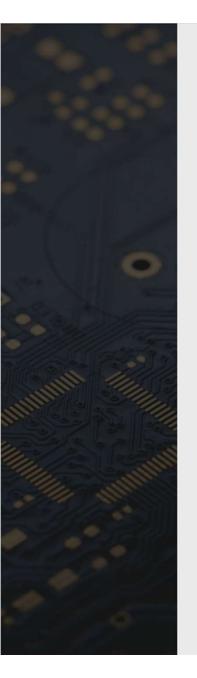
2 D画像

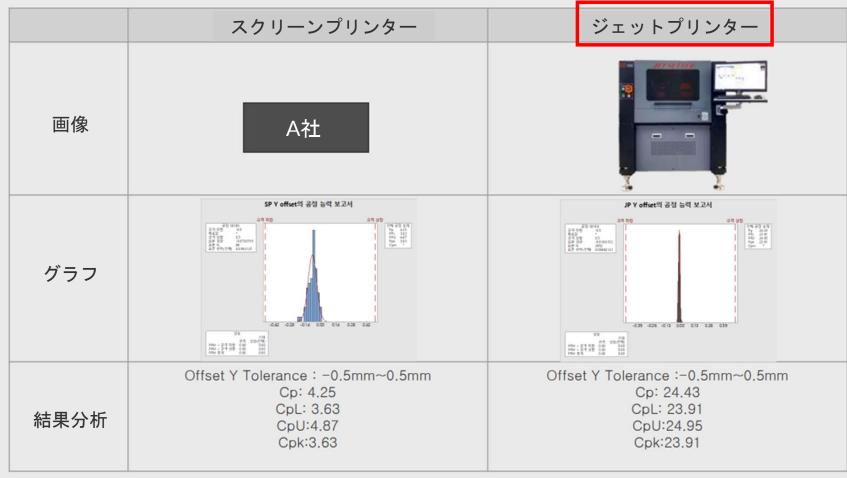

SPI 10um 分解能

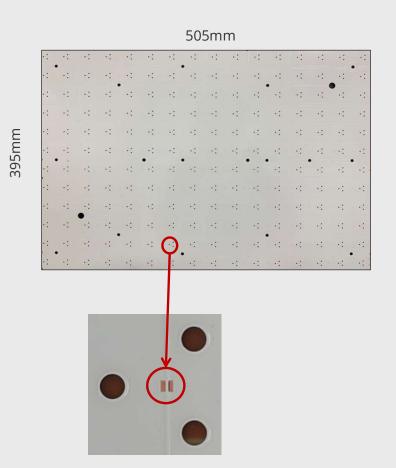

電子顕微鏡



Jet Setter VS スクリーンプリンター 体積比較




Jet Setter VS スクリーンプリンター X位置ずれ比較



Jet Setter VS スクリーンプリンター Y位置ずれ比較

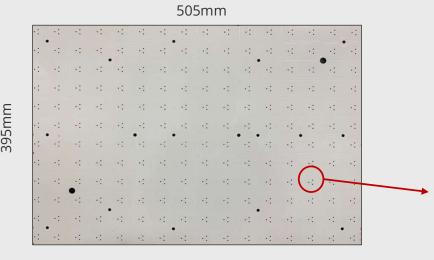
はんだ 噴射 タクトタイム

> 1 ドットの時

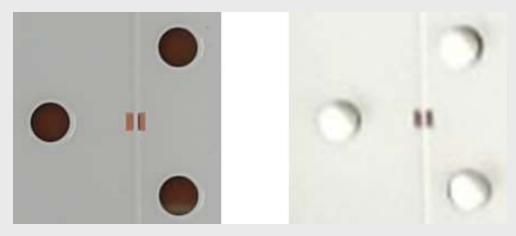
	0

項目	ドット数及びタクト	
ドット数	16 x 12 x 2 384ドット	
噴射時間	18秒	
搬入/搬出	10秒	

> 2ドットの時


項目	ドット数及びタクト	
ドットの数	16 x 12 x 4 = 768ドット	
噴射時間	25秒	
搬入/搬出	10秒	

➤ 3ドットの時


項目	ドット数及びタクト
ドットの数	16 x 12 x 6 = 1,152ドット
噴射時間	26秒
搬入/搬出	10秒

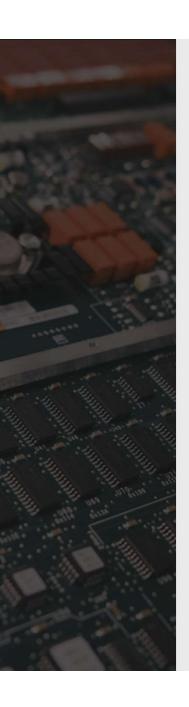
エポキシ 噴射 タクトタイム

> 1 ドット噴射 (0.7mg)

項目	ドット数及びタクト	
ドット数	16 x 12 x 3 = 576ドット	
噴射時間	26秒	
搬入/搬出	10秒	

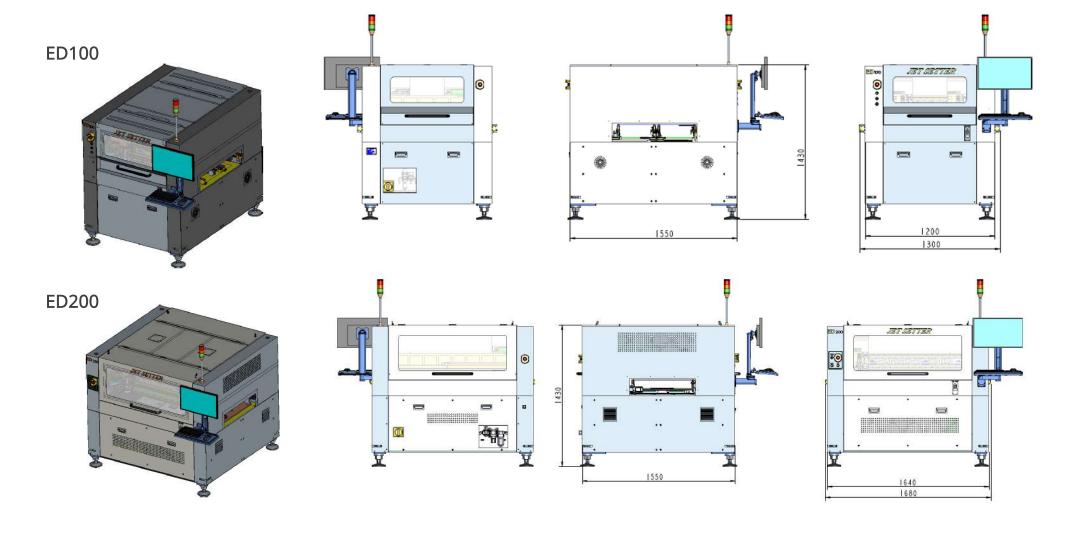
噴射前 / 後

装置仕様 - 機械プラットフォームとパフォーマンス


モデル	ED100	ED200
最高噴射速度	1440,000DPH	1440,000DPH
ガントリータイプ	X/Y リニアモーター	X/Y リニアモーター
サーボ	Advanced DSP モーションコントロール	Advanced DSP モーションコントロール
ガントリー最高加速度	3G	2G
ポジション解像度	1µm	1µm
Active Field of View	16.8x14.1mm	16.8x14.1mm
ガントリ再現性	±3µm	±3μm
コントローラタイプ	PC コントロール	PC コントロール
サイズ	1,200(L) x 1,550(W) x 1,420(H)	1,640(L) x 1,550(W) x 1,420(H)
高さの測定方法	レーザーセンサー	レーザーセンサー
電圧	3相 AC220 ±10%, 50/60Hz	3相 AC220±10%, 50/60Hz
必要な電力	4kW (最大)	4kW (最大)
消費電力	3kVA	3kVA
必要空気圧	0.55Mpa~0.75Mpa	0.55Mpa~0.75Mpa
操作 の温 度	+18°C~32°C, 30~80% RH	+18°C~32°C, 30~80% RH

サポート物質	はんだ	他の接着物質
適用タイプ	Pneumatic valve	Piezo ejector
ドットサイズ	2-35nℓ	0.3-1,000nℓ
最小ドット径	180µm	300µm
シリンジ サイズ	5,10,30cc	5,10,30cc
単一ドット再現性/精度	±30µm / ±50µm	±30μm / ±50μm

装置仕様 - オプション


モデル	ED100	ED200
SMD接着物質	•	•
極小ピッチサポート	Pitch: 500μm	Pitch: 350µm Pitch: 350µm
DBMSサポート	•	•
PCB ID - ボード Traceabilityサポート	•	•
デュアルレイアウト	•	•
ボードインデックス	•	•
クリーニングステーション	•	•
ダミーショットの自動ビジョンキャリブレーション	•	•
電子スケール(エポキシ用)	•	•
真空クランプ	•	•

装置仕様 - ボードハンドリング

	Model	ED100	ED200
基板搬送高さ		880mm - 925mm	880mm - 925mm
基板搬送高さ(SMEMA)		930mm - 975mm	930mm - 975mm
シングルレーン	最大ボードサイズ (バッファー無)	440mm (L) x 580mm (W)	900mm (L) x 580mm (W)
	最大ボードサイズ (バッファー有)	440mm (L) x 320mm (W)	900mm (L) x 320mm (W)
デュアルレーン	最大ボードサイズ (バッファー無)	330mm (L) x 580mm (W)	500mm (L) x 580mm (W)
	最大ボードサイズ (バッファー有)	330mm (L) x 320mm (W)	500mm (L) x 320mm (W)
特殊仕様 最大基板サイズ		800mm (L) x 580mm (W)	1200mm (L) x 580mm (W)
最大基板重量		5kg	5kg
最小基板サイズ		70mm (L) x 40mm (W)	70mm (L) x 40mm (W)
基板厚		0.4mm~6.0mm	0.4mm~6.0mm
基板流れ方向		L→R, R→L, Bypass	L→R, R→L, Bypass

装置レイアウト

